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ABSTRACT 

This paper proposes a nonparametric discriminant variable-selection algorithm to discriminate two multivariate 

populations and an associated optimal decision rule for membership-prediction. The present work relaxes the               

'equal variance-covariance matrices' condition traditionally imposed and develops a discrimination-classification procedure 

by including variables that best contribute to the 'discrimination', one-by-one in a forward-stepwise manner. The inclusion 

of variables in the discriminant is determined on the basis of best 'discriminating ability' as reflected in 'maximal 

difference' between the distributions of the discriminant in the two populations. A new decision-rule for classification or     

membership-prediction with a view to maximize correct predictions is provided. The proposed algorithm is applied to 

develop an optimal discriminant for predicting preterm labour among expecting mothers in the city of Chennai, India, and 

its performance is compared with logistic regression. 
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1. INTRODUCTION  

Discriminant Analysis for discriminating two multivariate populations and classification of members to the two 

has been in existence for many decades now. Traditionally, for application of the technique to a distribution free (non-

parametric) context, the condition of 'equal variance-covariance matrices of the populations' is imposed, although this 

condition is not needed for multivariate normal populations. The inclusion of any variable in the discriminant is based on a 

comparison of its means in the two populations. Further, membership-prediction or classification of members to the two 

populations is based on the 'distances' with the means of the discriminant in the two populations. The objective of the 

present work is to develop a simple algorithm to build an efficient discriminant model for two populations, with wider 

scope of application.  

It is well known that in many real life situations involving observation of multiple variables in two populations, 

multivariate normality or equality of variance-covariance matrices is not guaranteed. In case of multivariate normality, test 

for equality of the variance-covariance matrices can be carried out and, if equality is verified, one can proceed with the 

traditional linear discriminant function; in the unequal case, quadratic discriminant function can be applied. In                

non-multivariate-normal situations with equal variance-covariance matrices, the distribution free Fisher's linear 

discriminant function is applicable but there is no easy procedure for testing the equality of the variance-covariance 

matrices in such situations. In most applications, practitioners tend to 'assume' equality and proceed. The need to fill this 

'gap' and provide a discrimination-classification procedure in a distribution-free setting without the condition of equal 

variance-covariance matrices is the motivation for the present work. We aim to develop a theoretical framework and a 
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simple tool leading to an efficient procedure which can be applied without the conditions that restrict the existing methods.   

Modifications and advancements to the classical theory of discriminant analysis have been the topic of research of 

a number of authors over the past many years. Innovative approaches to develop discriminant models have been provided 

by a good number of authors with focus on identifying the important variables for discrimination of the populations. 

Among the notable early works in this context are the approach given by Chang (1983) using principal components in the 

context of separating a mixture of two multivariate normal distributions and that of Bensmail and Celeux (1996) who 

considered Gaussian discriminant analysis through eigen-value decomposition. A stepwise algorithm involving the use of 

'Bayesian Information Criterion' was developed by Murphy et al. (2010) following the ideas of Raftery and Dean (2006) 

who proposed a similar approach for model-based clustering. The above-referred approaches are parametric and restricted 

in their applicability.  

Other scholarly works on the topic extends discriminant analysis to non-parametric settings in different directions. 

Nonparametric versions of discriminant analysis with nonlinear classification schemes were obtained by Hastie et al. 

(1994) in the presence of a large number of predictor variables. Nonlinear discriminant analysis using a kernel approach 

which is theoretically close to support vector machines was presented by Baudat and Anouar (2000). Nonparametric 

discriminant analysis with adaptation to nearest-neighbour classification was presented by Bressan and Vitria (2003). 

Chiang and Pell (2004) combined genetic algorithms with discriminant analysis for identifying key variables. A primary 

concern in most of the above-mentioned works was on identifying the variables that would enable effective discrimination 

between the populations. 

This paper takes an approach different from that of the other approaches present in the literature on two-

population discriminant analysis while, at the same time, sticking to the basic spirit and mathematical objective of classical 

discriminant analysis. A 'model performance' measure for the discriminant model reflecting the ability of the derived 

'discriminant' to maximally differentiate the two populations in a non-parametric paradigm is suggested. A variable-

selection algorithm is presented to build the discriminant model by selecting variables that best contribute to the 

discrimination-ability one-by-one in a forward-stepwise manner. A decision rule for identifying the optimal cut-off point 

for classification or membership-prediction with the objective of maximizing correct classifications is provided.  

 Hence, the objectives of the present work are: 

I. To provide a theoretical framework for handling situations with unequal variance-covariance marices. 

II. To suggest a 'model performance' measure for judging discriminant models. 

III. To present a variable-selection algorithm for discriminating two populations and an easy-to-apply procedure for 

classification of objects. 

IV. To apply the algorithm to a biomedical phenomenon and compare its classification-performance with that of 

logistic regression.  

This paper is organized as follows: Following this introductory section, the basic theoretical framework required for 

further development is presented in Section 2. The specific theoretical aspects for the two-population discrimination 

context and the derivation of the optimal discriminant function are given in Section 3. The motivation and the proposition 

of the new model performance measure is given in Section 4. The new variable-selection algorithm to build an efficient 
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discriminant model is outlined in Section 5. As an immediate real-life application of the proposed methodology, the 

prediction of 'pre-term labour' in pregnant women is considered. Section 6 discusses the phenomenon of pre-term labour, a 

potential risk that pregnant woman face and the possible factors associated with the phenomenon. In Section 7, the 

proposed algorithm of discriminant model building is applied to predict pre-term labour using a sample of 200 women who 

delivered babies in Department of Obstetrics and Gynaecology, Government Kilpauk  Medical College and Hospital, 

Chennai, India, during the five-month period of 7th May, 2015 to 7th October, 2015.  

2. THEORETICAL FRAMEWORK 

Consider two populations denoted as π1 and π2. The objects in the two classes are to be classified on the basis of 

measurements on a random vector, say, X = (X1, X2... Xp) T. If the spread of values and the distribution of X were 'not 

substantially' different for objects in π1 and π2, then there would not be any effective discrimination between π1 and π2 and 

any attempt to carry out classification of objects would not be fruitful. But, when there is a 'significant' difference between 

the distributions, classification or membership-prediction becomes relevant and the ‘correctness’ or ‘incorrectness’ of 

classifications turns out to be a material issue.  

Denote the mean-vectors of X in the two populations as μ1 = E1(X) and μ2 = E2(X) and the variance-covariance 

matrices of X in the two populations be Σ1 and Σ2. In the sequel, we derive a general expression for the mean vector and 

variance-covariance matrix of the 'combined' population π1 U π2. Towards this, we present a lemma, to derive the general 

expressions for mean vector and variance-covariance matrix of a random vector X in terms of conditional mean vector and 

conditional variance-covariance matrix of X given a random object W. We denote the Expectation and                   

Variance-Covariance matrix operators under the unconditional distribution of X as EX(∙) and VX(∙). The operators under the 

conditional distribution of X given W shall be denoted as EX|W (∙) and VX|W (∙). The corresponding operators under the 

distribution of W shall be EW (∙) and VW (∙). The relationship for mean vectors is well known to be E(X) = EW [EX|W (X)] 

while that for variance-covariance matrices is not well known. So we present a lemma deriving this relationship. 

Lemma 2.1: For a random vector X and another random object W, the relationship between the unconditional and 

unconditional variance-covariance matrices is given by 

              E(X) = EW [EX|W (X)] and V(X) = EW{VX|W(X)} + VW{ EX|W(X)}                                                                       (2.1)  

Proof: Consider VX(X) = EX(X∙XT) – EX( X)∙EX(XT) 

                    = EW[EX|W (X∙XT)] – EW[EX|W(X)]∙EW[EX|W(XT)] 

                          = EW[EX|W (X∙XT)] – EW[h(W)]∙ EW[h(W)]T                                                                                              (2.2) 

Where h (W) = EX|W(X) 

Now, VX|W(X) = EX|W (X∙XT) − EX|W(X) ∙EX|W (XT) = EX|W (X∙XT) − [h (W)] ∙ [h (W)]T so that 

EX|W (X∙XT) = VX|W(X) + [h (W)] ∙ [h (W)]T                                                                                                         (2.3) 

Using (2.3) in (2.2), we get 

VX(X) = EW{VX|W(X) + [h(W)]∙[h(W)]T}– EW[h(W)]∙ EW[h(W)]T 

            = EW{VX|W(X)} + EW{[h(W)]∙[h(W)]T} – EW[h(W)]∙ EW[h(W)]T 
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            = EW {VX|W(X)} + VW {h(W)} 

            = EW {VX|W(X)} + VW {EX|W(X)}  

Hence the Lemma. 

Next we present a lemma to derive an expression for the 'overall' variance-covariance matrix of the 

combined population in the context of two-population discriminant analysis. In this context, the  

random object W has two possible 'values' π1 and π2 with probabilities p1 and p2 representing the relative sizes of the two 

populations. Then, we have EX|W(X | π1) = μ1 and EX|W(X | π2) = μ2 and also, VX|W(X| π1) = Σ1 and VX|W(X| π2) = Σ2. With 

these, we have the following lemma.  

Lemma 2.2: The 'overall' variance-covariance matrix of the combined population is 

         Σ = p1Σ1+ p2Σ2 + p1(1–p1) μ1. μ1
T + p2(1–p2) μ2. μ2

T – p1 p2(μ1 μ2
T + μ2 μ1

T )  . .                                                   . . (2.4) 

Proof: In the two-population discriminant analysis context, the random object W has the following "two-valued" 

distribution:  π1 with probability p1 and π2 with probability p2. 

Now, h (W) = EX|W(X) assumes two (vector) values: μ1 with probability p1 and μ2 with probability p2. 

The overall mean vector of X in the combined population is E(X) = EW [h (W)] = p1 μ1 + p2 μ2  

Also, EW {[h (W)]∙[h(W)]T}= p1 (μ1∙ μ1
T) + p2(μ2∙μ2

T)                                                                                          (2.5) 

and EW[h(W)]∙ EW[h(W)]T = (p1 μ1 + p2 μ2 )∙( p1 μ1 + p2 μ2)T 

                                           = p1
2 (μ1∙ μ1

T) + p1 p2 (μ1∙μ2
T + μ2 ∙μ1

T) + p2
2 (μ2∙ μ2

T)                                                              (2.6)  

So, VW {EX|W(X)} = p1 (μ1∙ μ1
T) + p2(μ2∙μ2

T) – (p1 μ1 + p2 μ2)( p1 μ1 + p2 μ2)T   

                               = p1 (1-p1) μ1. μ1
T + p2 (1-p2) μ2. μ2

T – p1 p2 (μ1 μ2T + μ2 μ1T)                                                            (2.7) 

Next, conditional on W, VX|W(X) is a (random) matrix assuming two possible 'values' namely Σ1 with probability 

p1 and Σ2 with probability p2. So, 

EW{VX|W(X)} = p1 Σ1 + p2 Σ2                                                                                                                                 (2.8) 

Referring to (2.1) and using (2.7) and (2.8), we get the expression for Σ in (2.4). Hence the lemma. 

3. TWO-POPULATION DISCRIMINATION AND OPTIMAL DISCRIMINANT FUNCTION 

In Discriminant Analysis, the Multivariate observations (X) are transformed to univariate observations (Y) by 

considering linear combinations of the Xi's. Any linear combination of the Xi’s may be expressed as Y = ℓTX where ℓ is a p 

x 1 vector of constants. It is easily seen that the means of Y in the two populations are μ1Y = ℓTμ1 and μ2Y = ℓTμ2 and in the 

combined population it is given by   μY = p1 ℓTμ1 + p2 ℓTμ2. And, the variance of Y in the combined population is given by 

V(Y) = ℓT Σ ℓ.  

The linear combination which maximizes the (squared) distance between μ1Y and μ2Y relative to the variability in 

Y helps in discriminating the two groups in the most 'optimal' manner. In the classical Fisher's Linear Discriminant 

Analysis, the distance was measured relative to the 'common' variability in Y in the two populations. As the objective of 
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the present work is towards developing the 'optimal' discriminant function in the 'unequal variance-covariance matrices' 

context, and as distances need to be measured between objects that belong to either of the two populations, the distance 

measurement will be more meaningful if it is measured relative to the 'overall' variability in the combined population. The 

'distance-maximizing' linear combination of the Xi's is the 'optimum discriminant function' based on X. We call it 'X-based 

optimal discriminant'. 

Derivation of the Optimal Discriminant Function 

Denote any linear combination of the underlying  random vector X to be  used  for Discriminating the populations 

as Y = ℓT X. The (squared) distance between the means of Y in the two populations relative to the overall variability in Y 

in the combined population is given by 

)(
tan

YVar
YofmeansthebetweencedisSquared

 = 
 


T

YY
2

21 )( 
 = 



T

T 2)( 
 where δ = μ1 – μ2 

This ratio is to be maximized to get the optimal Discriminant function. By an application of Cauchy-Schwartz 

inequality, the maximum of the above ratio is attained when ℓ = c Σ–1δ (for any choice of non-zero scalar ‘c’). Choosing     

c = 1, we get the X-based optimal discriminant as 

                                   Y = (Σ– 1δ)T X =  δTΣ– 1X = (μ1 – μ2)T Σ– 1X                                                                                      (3.1)  

Typically, the true mean vectors and the variance-covariance matrix are unknown and so, they are replaced by the 

sample estimates. The optimal discriminant function converts the two multivariate populations π1 and π2 into univariate 

populations such that the corresponding univariate population means are separated ‘as much as possible’ relative to the 

overall variance in the combined population. In the proposed approach, we impose the criterion that, this ‘maximal’ 

differentiation is reflected in a ‘significant’ difference between the distributions of the discriminant scores in the two 

populations. as measured by the two-sample Kolmogorov-Smirnov Statistic 

3. MODEL-PERFORMANCE MEASURE 

In a practical application, typically the investigators measure a number of variables that they view as important for 

their study. But for the purpose of discrimination between two groups and classification (or membership-prediction), some 

of the variables may be irrelevant. It would be pertinent to build the 'optimal discriminant model' developed in Section 3, 

with only a subset of the variables observed. Thus, a need to compare the 'optimal discriminant models' built on different 

subsets of the variables arises and hence, a measure to compare the models becomes essential. As stated in the previous 

section, the 'optimal discriminant function' must be capable of maximally differentiating the two populations. This 

'differentiation' is reflected in the two-sample Kolmogorov-Smirnov Statistic which measures the 'distance' between the 

distribution functions of the discriminant in the two populations. In the sequel, the proposed model-performance measure is 

developed: 

Suppose X(s) be a subset of the variables used to build the optimal discriminant. Denote the mean vectors of X(s) in 

the two populations as μ1(s) and μ2(s) and the 'overall' variance-covariance matrix of X(s) as Σ(s). Proceeding as in Section 3, 

we get the X(s)-based optimal discriminant as  
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Y(s)= (μ1(s) – μ2(s))TΣ(s)
– 1X(s)                                                                                                                                    (4.1) 

Typically, these parameters are replaced by the sample estimates in practice. Computing the variable Y(s) for all 

members in both the samples, the performance of the X(s)-based optimal discriminant is measured by the two samples 

Kolmogorov-Smirnov Statistic based on the Y(s) measurements. Denoting the (empirical) cumulative distribution functions 

of Y(s) for the two populations as F1(s)(∙) and F2(s)(∙), the performance measure is given by 

KS(s) =  |)()(|max )(2)(1 yFyF ssy


    
                                                                                                            (4.2) 

Given two subvectors X (s1) and X (s2), the optimal X(s1)-based discriminant is said to be 'more efficient' than the 

optimal X(s2)-based discriminant if KS(s1) > KS(s2). If there exists a random subvector X(s*) for which KS(s*) > KS(s) for every 

other random subvector X(s), then the corresponding optimal discriminant Y(s*) is the 'most efficient' discriminant. 

However, obtaining the 'most efficient' discriminant is computationally prohibitive in the presence of a very large 

number of predictor variables (i.e.) in case of very high dimension of the underlying random vector X. This is true of every 

model-building situation involving a large number of predictor variables and different algorithms are therefore suggested 

to 'build' improved models sequentially instead of considering 'all possible' models or identifying the 'most efficient'.  

In the same spirit, the next section presents a model building algorithm to build a 'sequence' of models leading to 

an efficient discriminant model.   

5. THE PROPOSED VARIABLE-SELECTION ALGORITHM 

The proposed Algorithm evaluates each candidate ‘input’ variable for discriminatory capacity in a sequential 

manner towards constructing the optimal discriminant function. Variable-selection for discriminating between two 

populations has been addressed in the past too. Interesting references in this context are the papers of Habbema and 

Hermans (1977) in which selection of variables for Gaussian discriminant analysis was on the basis of F-Statistics and 

error rates and that of Pfeiffer (1985) wherein smoothing factors of kernel functions for nonparametric discriminant 

analysis were considered and different criteria like distances, error rates and density-ratios were used for variable selection.  

Here, we propose a different route to variable-selection in a forward-stepwise manner. The  algorithm proceeds by 

bringing one input variable at a time on the basis of maximal differentiation between the distributions of the discriminant 

scores in the two populations, as measured by the two sample Kolmogrov-Smirnov (KS) statistic used for comparison of 

two distributions. The exact stepwise process is described below. 

Let X1, X2,. . , Xp be the candidate input variables. 

Step 1: With one variable at a time, ‘p’ discriminants Y(1), Y(2),. . .,Y(p), where Y(i) is the discriminant based on 

single input variable Xi, and their corresponding scores are obtained  for  each individual record in  the  data. Let the 

Kolmogorov-Smirnov Statistic for Y (i) is denoted as KS (i). If  

KS (i) > KS (j) for every j ≠ i  

Then among the individual variables considered on a one-at-time basis, Xi is the top discriminator between the 

two populations. The significance of this KS(i) statistic is evaluated and if found significant at a desired level, Xi first 

'enters' the model and model building continues. 
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Step 2: With Xi having been already  selected, we take one additional variable at a time and obtain  (p–1) 

discriminants having input-pairs (X1,Xi),....,(Xi-1, Xi),(Xi+1,Xi),....,(Xp, Xi). Denote the discriminants as Y(1,i), Y(2.i),..., Y(i-1,i), 

Y(i+1,i), ... Y(p,i) and the corresponding Kolmogorov-Smirnov statistics as KS(1,i), KS(2,i),...,KS(i-1,i), KS(i+1,i),..., KS(p,i). If for 

some 'm',  

KS (m,i) > KS(j,i) for every j ≠ m, and KS(m,i) > KS(i),  

Then Xm enters the model as the second variable. It is to be noted that the significance of KS (m, i) is guaranteed 

because of the significance of KS (i) in the first step. In contrast, if  

KS (m, i) > KS (j, i) for every j ≠ m, but KS (m, i) ≤ KS (i),  

Then Xm does not enter the model, nor any of the remaining Xj's enters, as its entry leads to reduced 

discriminatory ability and the model building stops with only one input variable. Clearly no other variable can enter. 

At  every subsequent step that is considered, one more  additional  variable  enters  provided  the  maximum  KS  

value  at that step  exceeds the maximum KS value of the previous step. If it is equal to or less than the previous maximum, 

the process stops. When the process stops at the (k+1) th step, the optimal discriminant function is the one obtained in the 

kth step with the maximum KS value, leading to significant and maximum discrimination between the two populations. We 

denote the final subset of variables reached in this process as X(S*) and the 'final' efficient discriminant as Y(s*).  

Classification or Prediction Rule 

The classification or prediction rule to allocate an object to one of the two populations is based on the optimal cut 

point at which the KS statistic value is attained. Let y0 be the point such that                                 

KS(s*)=  |)()(|max *)(2*)(1 yFyF ssy
  = |)()(| 0*)(20*)(1 yFyF ss   

This point y0 gives maximum differentiation between the distributions of the Y(s*) scores in the two populations 

and is the 'efficient cut-point'.  

Now, let the means of the final efficient discriminant Y(s*) in the two populations π1 and π2 be denoted as *)(1 sY  

and *)(2 sY and, let *)(1 sY > *)(2 sY . For membership-prediction, we proceed as follows: 

If y(s*) is the value of the final efficient discriminant Y(s*) for an object, then the following classification rule is to 

be applied: 

Classify object to: 




2

1




if
if

0*)(

0*)(

yy
yy

s

s




  

With the above classification criterion, we observe that )( 0*)(1 yF s gives the proportion of π1 objects wrongly 

classified to π2 and )( 0*)(2 yF s gives the proportion of π2 objects correctly classified to π2 using the cut-point y0. And, the 

final Kolmogorov-Smirnov statistic KS(s*) can be 'explained' as follows: 

KS(s*) = |Proportion of π1 objects misclassified − Proportion of π2 objects correctly classified | 
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 = |Proportion of π2 objects correctly classified−(1− Proportion of π1 objects correctly classified) | 

 = |(Proportion of π1 objects correctly classified + Proportion of π2 objects misclassified) − 1| 

It is easily seen that, higher value of the KS(s*) statistic indicates higher proportion of correct classifications to 

both π1 and π2. 

We note that, considering any point other than the efficient cut-point y0 would lead to an overall reduction in the 

proportion of correct classifications. It is also interesting to note that, instead of working with the cumulative distribution 

functions, we can work with the 'reliability functions' and use the absolute difference of these as the Kolmogorov-Smirnov 

Statistic, leading to equivalent results. We note that evaluating the KS statistic through reliability function would require 

the descending order arrangement of the discriminant scores in contrast to the usual method of ascending order 

arrangement.   

6. THE PHENOMENON OF PRETERM LABOUR 
Preterm Labour 

The lifestyle changes brought about by technological revolution, the job nature of the younger generation people 

and careless food habits have brought in many health-related disorders among youngsters. Women are not free from this 

problem and in the case of married women this results in pregnancy-related issues and delivery-complications. Giving birth 

to the baby ahead of the normal delivery deadline is a serious anomaly which can affect the child’s growth milestones and 

create other physical difficulties for the child for life.  

Preterm labour is defined as the presence of uterine contractions of sufficient frequency and intensity to effect 

progressive effacement and dilatation of the cervix prior to term gestation between 20-37 weeks. 

Incidence 

Incidence of preterm birth (PTB) has been found to be 12% of all deliveries and accounts for a majority of 

neonatal deaths and nearly half of all cases of congenital neurological disability, including cerebral palsy.  

Of all preterm births that occur, 40 - 45% result from onset of labour, 25 - 30% result from preterm premature 

rupture of membranes (PPROM) and 30 - 35% are medical decisions. A PTB resulting from labour or PPROM are referred 

to as spontaneous PTB (SPTB). 

Potential Factors Associated with Preterm Labour  

During pregnancy, maternal lipids are important both for steroid genesis of the mother, placenta and fetus as well 

as for fetal growth. It may reflect an individual’s predisposition to develop metabolic syndrome. Metabolic syndrome is a 

disorder marked by increased inflammation, a reported pathway for preterm labour. For research relating lipid profile to 

preterm labour, reference is made to the article of Mudd et al. (2012) among others. Dyslipidemia has been suggested to be 

one pathway that explains why women at risk for preterm labour are also at risk for developing cardiovascular disease later 

in life. We refer to Catov et al. (2007) in this context. In this study, we consider the following factors (Lipid Profiles):    

Lipid Profiles 

1. Total Cholesterol (TC) 
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Directly linked to risk of heart and blood vessel disease. 

2. High Density Lipoprotein (HDL) “Good cholesterol” 

High levels linked to a reduced risk of heart and blood vessel disease. The higher the HDL, the better. 

3. Low Density Lipoprotein (LDL) “Bad cholesterol” 

High levels are linked to an increased risk of heart and blood vessel disease, including coronary artery 

disease, heart attack and death. Reducing LDL levels is a major treatment target for cholesterol-

lowering medications. 

4. Triglycerides (TGL) 

This is elevated in obese or diabetic patients. Level increases from eating simple sugars or drinking 

alcohol. Associated with heart and blood vessel disease. 

In addition to the above factors, we consider the following: 

5. Amniotic fluid index (AFI)  

This is an estimate of the amount of amniotic fluid and is an index for the fetal well-being.  

6. Prepregnancy Body Mass Index (BMI) 

A general indication of physical health-being for anyone including expecting women. 

Objective: This study aims to relate the above factors to preterm labour through the discriminant analysis model 

developed in the earlier sections of this paper. We wish to identify the significant factors that are associated to the risk of 

preterm labour.  

Study Design: Cross sectional comparative study 

Sample Size: Study group (women with spontaneous preterm labour) is 100; Comparative group (women with term 

labour) is 100. 

PREDICTION OF PRETERM LABOUR THROUGH EFFICIENT DISCRIMINANT ANALYSIS 

A sample of the data on the six variables listed under 'Potential factors' along with the birth outcome (Term labour 

= 1, sPTB = 2) is given below: 

Table 1 

Record # X1 (BMI) X2 (AFI) X3 (TC) X4 (TGL) X5 (HDL) X6 (LDL) Outcome 
1 12.6 14.2 274 168 76 114 1 
2 19.3 9.5 276 288 89 186 2 
3 12.6 14.2 235 168 76 114 1 
4 12.6 14.2 274 168 76 114 1 
5 19.7 9.6 310 298 89 186 2 

 

We apply the variable-selection algorithm developed in this paper and get the following results. 

Step 1: The KS statistics for models with single variables are found to be 
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KS(X1) = 0.210, KS(X2) = 0.400, KS(X3) = 0.880, KS(X4) = 0.920, KS(X5) = 0.250, KS(X6) = 0.800 

X4 enters the model in the first step. The KS value of 0.920 is found to be statistically significant. 

Step 2: The KS statistics for models with one additional variable with X4 are found as 

KS(X1, X4) = 0.910, KS(X2, X4) = 0.930, KS(X3,X4) = 0.960, KS(X5,X4) = 0.470, KS(X6,X4) = 0.920 

X3 enters the model in the second step.  

Step 3: In this step we get 

KS(X1, X3, X4) = 0.950, KS(X2, X3, X4) = 0.980, KS(X5, X3, X4) = 0.210, KS(X6, X3, X4) = 0.930 

X2 enters the model in the third step. 

Step 4: In this step we get 

KS(X1, X2, X3, X4) = 0.980, KS(X5, X2, X3, X4) = 0.980, KS(X6, X2, X3, X4) = 0.960 

As none of the latest KS statistics exceeds the previous maximum KS value, the variable selection algorithm stops 

with three variables being selected in the order of X4, X3 and X2.  

The 'Efficient Discriminant’ obtained at the end of Step 3 of our algorithm is: 

                                 Y = 0.1853*AFI − 0.0343*TC − 0.0228*TGL                                                                                   (7.1) 

The estimated means of Y in the two populations are found to be 

                                 μ1Y = −11.3522, μ2Y = − 14.6097 

and the 'efficient cut-point' is y0 = −12.578 

Here, '1' denotes 'term labour group' and '2' denotes 'sPTB group'. 

Membership-Prediction Rule: If 'y' denotes the measured value of the 'Efficient Discriminant' Y of (7.1) for an 

individual, then the prediction rule is as follows: 

Classify individual to: 




GroupLaboureTerm
GroupLabourTerm

Pr
 

578.12
578.12




yif
yif

 

We observe form (7.1) that, increased AFI, lower TC and lower TGL indicate the likelihood of normal term 

labour for a woman. Accordingly, we find that lower AFI, higer TC and higher TGL increase the risk for preterm labour 

for a woman.  

Comparison with Logistic Regression Model: 

Denoting 'preterm labour outcome' as the outcome of interest, we build a logistic regression model using the 

stepwise method of model building.  

Step 1: TC entered with very high significance and with a positive coefficient. 

Step 2: TGL entered with very high significance and with a positive coefficient. 

The model building process stops with this and we have the following logit equation from the model: 
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







 p
p

1
log  = − 59.154 + 0.119*TC + 0.108*TGL 

where 'p' is the probability of preterm labour. The KS for this model is found to be 0.950 which is less than the KS 

obtained for the 'Efficient Discriminant Model'. Thus, the new method performs better than binary logistic regression 

method in predicting preterm labour among pregnant women. 

It is also interesting to note that, while logistic regression identifies two factors TC and TGL, our model captures 

one more important factor AFI. In this context we refer to the article of Weismann-Brenner et al. (2009) in which it was 

stated that the mean AFI differs significantly between PPROM (PTB) cases and the normal cases. Our discriminant model 

confirms that AFI is an important discriminator between preterm and term labour cases and that lower AFI points to the 

risk of preterm labour. The finding here supports the discovery of the medical research team of Brenner et al.  

We emphasize that, though the new approach needs to be applied to many more situations wherein logistic 

regression is applied to decide its effectiveness in prediction of 'binary' outcomes, the present findings suggest that this 

approach is a promising alternative to logistic regression model. It is expected that this approach is also capable of 

performing better than logistic regression approach in some applications and could also discover some important 

discriminators which the latter fails to identify.     
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